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BULK-FLOW ANALYSIS OF HYBRID THRUST BEARINGS FOR ADVANCED

CRYOGENIC TURBOPUMPS
Luis SAN ANDRES, PRINCIPAL INVESTIGATOR

EXECUTIVE SUMMARY

A bulk-flow analysis and computer program for prediction of the static load performance
and dynamic force coefficients of angled injection, orifice-compensated hydrostatic /
hydrodynamic thrust bearings have been completed. The product of the research is an
efficient computational tool for the design of high-speed thrust bearings for cryogenic
fluid turbopumps. The study addresses the needs of a growing technology that requires of
reliable fluid film bearings to provide the maximum operating life with optimum
controllable rotordynamic characteristics at the lowest cost.

The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a
set of bulk-flow mass and momentum conservation and energy transport equations. Mass
flow conservation and a simple model for momentum transport within the hydrostatic
bearing recesses are also accounted for. The bulk-flow model includes flow turbulence
with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing
recesses and film lands. The cryogenic fluid properties are obtained from realistic
thermophysical equations of state. Turbulent bulk-flow shear parameters are based on
Hirs’ model with Moody's friction factor equations allowing a simple simulation for
machined bearing surface roughness. A perturbation analysis leads to zeroth-order
nonlinear equations governing the fluid flow for the thrust bearing operating at a static
equilibrium position, and first-order linear equations describing the perturbed fluid flow
for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-
order flow field equations renders the bearing flow rate, thrust load, drag torque and
power dissipation. Solution to the first-order equations determines the axial stiffness,
damping and inertia force coefficients. The computational method uses well established
algorithms and generic subprograms available from prior developments.

The Fortran90 computer program hydrothrust runs on a Windows 95/NT personal
computer. The program, help files and examples are licensed by Texas A&M University
Technology License Office.

The study of the static and dynamic performance of two hydrostatic/hydrodynamic
bearings demonstrates the importance of centrifugal and advection fluid inertia effects for
operation at high rotational speeds. The first example considers a conceptual hydrostatic
thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The
large axial stiffness and damping coefficients of the bearing should provide accurate
control and axial positioning of the turbopump and also allow for unshrouded impellers,
therefore increasing the overall pump efficiency. The second bearing uses a refrigerant
R134a, and its application in oil-free air conditioning compressors is of great
technological importance and commercial value.

The computed predictions reveal that the LH, bearing load capacity and flow rate
increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial



stiffness has a maximum for a recess pressure ratio ~0.55, while the axial damping
coefficient decreases as the recess pressure ratio increases. The computer results from
three flow models are compared. These models are a) inertialess, b) fluid inertia at recess
edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia
model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the
other hand renders the largest damping coefficients and inertia coefficients. The most
important findings are related to the reduction of the outflow through the inner radius and
the appearance of subambient pressures.

The performance of the refrigerant hybrid thrust bearing is evaluated at two operating
speeds and pressure drops. The computed results are presented in dimensionless form to
evidence consistent trends in the bearing performance characteristics. As the applied axial
load increases, the bearing film thickness and flow rate decrease while the recess pressure
increases. The axial stiffness coefficient shows a maximum for a certain intermediate
load while the damping coefficient steadily increases. The computed results evidence the
paramount of centrifugal fluid inertia at low recess pressures (i.e. low loads), and where
there is actually an inflow through the bearing inner diameter, accompanied by
subambient pressures just downstream of the bearing recess edge. These results are solely
due to centrifugal fluid inertia and advection transport effects.

Recommendations include the extension of the computer program to handle flexure pivot
tilting pad hybrid bearings and the ability to calculate moment coefficients for shaft
angular misalignments.



NOMENCLATURE

Ao (ndo%/4). Effective orifice area [m?].
Ag 7(RZ, —R2 ).Bearing surface area [m”].
Ar %@R (Réo ~- R )z%@R Dg |5 . Recess (pocket) area [m?].
Ar = Ay | R?
br recess arc length [m]. bg =bg / R.
C Hz. Nominal (minimum) film clearance [m].
Co Fluid specific heat [J/kg - °K]. C, =C,/C,
Cq Orifice discharge coefficient.
Cz Damping force coefficient [Ns/m]. C,, =C,, CQ2/[Ag(P, =P, )]
Cyq Orifice discharge coefficient
Dout 2-Royt . Bearing outer diameter [m].
Din 2Rin . Bearing inner diameter [m].
Dr 2 Rg. Recess center diameter [m].
do Orifice diameter [m]
Ec ~ . Eckert heat transfer dimensionless number.
™ px
Fz Fluid film axial force [N]. F, = F, /[Ag(P, = P,)]
eM am =0.001375
fse am {1+(CM fss . _bu j ]; by =510° oy -0’
H Resg eM =5

Turbulent flow Moody’s friction factors at shaft and bearing surfaces.
H,h Film thickness [m], H/C+
Hi234 Pad film thickness at leading edge, trailing edge, and midplane inner
and outer radius [m].
Hg,Hs convection heat flow coefficients on bearing and shaft surfaces

Hr Recess depth [m]. hy =HR /C



Mzz

Nrec

Npad

P,P

Pr, Ps

Pre +Pre
Ppin , Poout
Pa

den

Qss

R,r
R«
Re
Rep

Re,.

Reyp

Reg,Res

Az L - . .
< Small perturbation in axial displacement (dimensionless).

Stiffness force coefficient [N/m]. K,, = K,, C/[Ag(P, - P,)]

(Rout- Rin). Bearing radial length [m].
(Rro - Rri). Recess radial length [m].
Bearing mass flow rate [kg/s].

Mass flow rates through inner and outer diameters of bearing [kg/s].

Mass flow through recess orifice [kg/s]. My = Mg /(p.U.CR.)
$-pH U -7 dI". Mass flow from recess boundary into to film lands
[kg/s]. M, =M, /(p.U.CR.)

Inertia force coefficient [kg]. M,, = M, CQ22 /[Ag(P, =P, )]
Number of hydrostatic recesses (pockets) on bearing pad.

Number of pads on bearing.

Fluid pressure [N/m?], (P-P.)/(Ps-Py).

Recess pressure, supply pressure [N/m?].
Edge recess pressures [N/m?].

Fluid pressures at inner and outer bearing diameters [N/m?].
Characteristic pressure, Min[Ppin , Poout] [N/M?].

1 A( V2Rg)?. Pressure due to centrifugal inertia effect at pocket radius
Qs + Qs. Radial heat flow through bearing, Qg= Hg(T-Tg), and shaft,
Qs=Hs(T-Ts), surfaces [watt/m?].

Radial coordinate [m], R/ R..

Rout- Characteristic bearing radius [m].

(2 R.C/ 1..) Nominal circumferential flow Reynolds number.

(pU..C/ s.). Nominal pressure flow Reynolds number.

(Rep C/ R*). Nominal modified pressure flow Reynolds number.

(p*a)CZ I i =cRe,, ) . Squeeze film Reynolds number.

(AHI2) [URZ + UATY2, (AHI) [URE + (U~ 3R)?]¥2



Flow Reynolds numbers relative to bearing and shaft surfaces.
Roughness depths of shaft and bearing surfaces [m].

R/Rg. Local radial coordinate from pocket radius.

Time [s].

Temperature, T =T /T

Fluid supply temperature [°K].

bearing and shaft surface temperatures [°K].

Shear induced torque on bearing surface [Nm].T, =T,C /(u*U* Rf)

C2(P, —P,)/ s R.. Characteristic fluid flow velocity [m/s].
Bulk-flow velocities in radial and circumferential directions [m/s].

U, /U. U, /U.. Dimensionless radial and tangential velocities
[Ar(H+HR)+Vsuppiy] . Recess volume including supply line volume
[m*]. V; =Vx / RZC

External axial load on bearing [N]. W, =W, /[Ag(P, =P, )]

Fluid inlet swirl ratio at recess.

+(1/p)(dpl ). Liquid compressibility coefficient [m?/N].

- (1/p)(dpl oT). Liquid volumetric expansion coefficient [1/°K].
(H:-Hy)/C, (Hs-H,)/C. Pad circumferential and radial tapers [-].

)97,)9= ﬁk,uIr ;ﬁ(kgug —%ks_(,? Rj Wall shear stress differences in radial and

TR

Ro

Kr=K2

circumferential directions [N/m?].

1H 0P
1HoP +L{K9 U, -« (U, -2R)}. Turbulent wall shear stress

2R o6 4H

at runner surface [N/m?].

Cy A (2. [P -P,]M?
(PUCR).

First order shear coefficients (Appendix A).

. Dimensionless feed orifice coefficient.

Ya(xs + xg). Turbulence shear factors in (r,2) flow directions.



Ks, KB
Py 1

2

(03

6 pad
Cr

Sy Gxd

égri, égro

fs -Res, fg - Reg . Turbulent shear parameters at shaft and bearing.
Fluid density [kg/m®], viscosity [Ns/m?].
circumferential coordinate [rad].
angular extent of a bearing pad [rad].
Leading edge of a bearing pad [rad].
angular extent of hydrostatic recess (pocket) [rad].
Empirical recess-edge entrance loss coefficients in circumferential
(upstream, downstream) direction.
Empirical recess-edge entrance loss coefficients in radial direction,
inner and outer radii boundaries.
Tt. Dimensionless time.

OR./U.;oR. /U.. Circumferential speed and whirl frequency
numbers

shaft rotational speed, excitation or whirl frequency [rad/s]

Subscripts refer to:

0
S
0,1
R.e
u,d
B,S

recess feed orifice

Refer to pressure supply condition.
zeroth and first-order variables.
Bearing recesses and edges (entrance).
Upstream and downstream of recess.

Refer to bearing and shaft (collar) surfaces.

Overbar denotes dimensionless variable

Vi
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INTRODUCTION

The importance of hybrid (combination hydrostatic and hydrodynamic) journal and thrust
bearings and damping seal bearings as radial support elements in cryogenic
turbomachinery has steadily grown over the past few years. Advanced primary power
cryogenic turbopumps are compact - low count part units, operate at very high shaft
speeds, and require of externally pressurized fluid film bearings to support the expected
large thrust and lateral radial loads (Pelfrey, 1995). Fluid film bearings enable smaller
and lighter turbopumps through no bearing DN life limitation and no sub-critical rotor
operation. These mechanical elements have durability, low friction and wear, accuracy of
positioning, and large direct stiffness and damping force coefficients. These features
enable the design (and operation) of unshrouded impellers with a significant increase in
the turbopump mechanical efficiency.

The growth of an "all-fluid-film- bearing" technology for advanced and less costly (per
launching cost) turbopumps demands the development of analytical models and design
tools, the testing of components, and the implementation of the technology. San Andres
(1990-1996) has performed the thermohydrodynamic analysis and developed computer
programs for prediction of the static and dynamic force response of radial fluid film
bearings for cryogenic applications. The research addresses effectively the most
important theoretical and practical issues related to the operation and dynamic
performance of cryogenic fluid film bearings, i.e. namely, geometric configuration,
operating conditions, flow turbulence, fluid inertia, fluid compressibility, thermal effects,
and two-phase flow phenomena. The computational programs are not restricted in their
application to cryogenic fluid film bearings and seals. The codes have been validated
with experimental data from process fluid film bearings with mineral oils, water and air
in regimes of operation ranging from laminar flow to turbulent flows, and including the
transition zone to fully developed turbulence.

Further applications of compressible fluid thrust bearings in the Thermal Management
System of the Space Station Freedom also motivate further the need for advanced models
and computational tools. Current thrust bearing computational programs are based on the
Reynolds lubrication of classical lubrication, lack a comprehensive thermohydrodynamic,
do not include real fluid properties, and neglect fluid inertia (Coriolis and centrifugal)
effects on the bearing film lands.

Pinkus and Lund (1981) study the effects of centrifugal inertia on the performance of
hydrodynamic thrust bearings. Hashimoto (1989, 1990) extend the analysis to include
fluid advection transport effects. These original references have been instrumental to the
present development. Centrifugal forces, most important in the performance of parallel
plate bearings and seals, lead to subambient pressures and may induce lubricant
cavitation. Thus, large areas of the bearing surface could be denuded of fluid with a
significant reduction in the bearing load capacity. Operation at high rotational speeds will
also generate large circumferential fluid speeds with a tremendous impact on the inertial
pressure drop at the edges of the bearing recesses.



A bulk-flow analysis for prediction of the static load performance and dynamic force
coefficients of angled injection, orifice-compensated hydrostatic / hydrodynamic thrust
bearings follows. The model accounts for the bulk-flow mass, momentum and thermal
energy transport, includes flow turbulence and fluid inertia (advection and centrifugal)
effects on film lands and recesses, and incorporates cryogenic fluid properties using a
NIST data base (McCarty, 1986). The computer program predicts the flow rate, load
capacity, power loss and axial dynamic force coefficients for rigid surface, tapered land
hybrid thrust bearings. The static and dynamic forced performance of two hydrostatic
bearing geometries of interest for advanced cryogenic turbomachinery and oil-free
compressors are discussed in detail. Recommendations for further research close the
present development.



ANALYSIS

Consider the turbulent flow of a fluid within the film lands of a hybrid
(hydrostatic/hydrodynamic) thrust fluid film bearing. The bearing geometry and coordinate
system are depicted in Figure 1. In the following, the bulk-flow equations of motion for the flow
on the thin film lands are detailed along with a perturbation analysis for description of the
equilibrium flow (zeroth-order) and perturbed flow (first-order) due to shaft small amplitude

axial motions.
@ film land
waﬁ speed
- Ue
] orifice tangemi;\/ U,
' velocity radial

velocity
R
hydrostatic
recess 0 film land
] g
Rin Rout
\'§Q inner radius outer radius
[

I | | shaft (collar)
H: film thickness |
T | v | e bearing

Figure 1. Geometry of a hydrostatic / hydrodynamic thrust bearing

Bulk-flow equations on the film lands of a hydrostatic thrust bearing

Flow turbulence, fluid inertia and compressibility effects are important on the thin film lands of a
hydrostatic thrust bearing. The model assumes the fully developed turbulent bulk-flow of a fluid
whose material properties depend on its local thermophysical state of pressure and temperature.
The equations of mass, radial and circumferential momentum, and energy transport for the
bulk-flow velocities, pressure and temperature on the bearing film lands are given as (San
Andrés, 1994, 1995):

continuity:
o(ph), 1oRpHU,) 18(pHU,)_ 4 (La)
ot R OR R o6

radial momentum:

2
oo HU,)  1RoRUZ) 1(pHUU,) 1 e 2P
ot R OR R 00 R oR



circumferential momentum:

2
a(pHUG)_'_l@(Rp HUrU9)+£8(p HU9)+£pHUrUg:-ﬂa—P-ATQZ (1.c)
ot R oR R 00 R R 00
energy transport:
c, {6(pHT)+8(pHUrT)+i6(p HU,QT)}: Oy +
ot oR R 06

(1.d)

oP 0P 1 . 0P
ﬂTHT(at UaR Rugaejmg-rm\“wr-mm+u9-mgz

where Qgs =Qg + Qs = Hg(T-Tg)+Hs(T-Ts) is the convected heat flow through the bearing and
runner (shaft) surfaces. P and T are the fluid pressure and temperature, and (U, ,U_) are the bulk-
flow velocities in the radial and circumferential directions, respectively. Refer to the
Nomenclature for a description of all other variables.

The wall shear stress parameters are determined as local functions of turbulent friction factors,
and which depend on the bearing and shaft surface conditions and the flow Reynolds numbers
relative to the rotating shaft and stationary bearing surfaces (Hirs, 1973):

M U 1
L :E(Kg Uy—5Ks 2 Rj (2)

1H 0P
2'9R|H EE% 4'L|l_| {Keue Ks(Ue QR)}

where the turbulent flow shear factors (xi=x>, xs) are defined in terms of the friction factors (f)
and Reynolds numbers (Re) relative to the stationary bearing (B) surface and the shaft (S)
rotating surface. The functional forms are:

ReB:(%}/ugwg ; Res{%jw%(ug—gmz (3.b)

The cryogenic liquid properties (4,.,C,) are extracted from the Benedict-Web-Rubin equation of



state as given in the standard data base of McCarty (1986).

Bulk-flow equations at the recess of a hydrostatic thrust bearing

In a hydrostatic bearing, the fluid at pressure (Ps) and temperature (Ts) is supplied through orifice
restrictors into the bearing pockets or recesses. The continuity equation at a hydrostatic recess
establishes a balance among the mass flow through the feed orifice (Mg), the flow through the
boundaries of the recess into the film lands (Mr), and the accumulation of fluid mass within the
recess volume, Vr=[Ar (H+Hg)+Vsyppiy]. The conservation of mass flows at a bearing recess is
given as,

oVg .
MRi:Mri‘f‘pRia—tl"'pR R|{ﬂP ot _:BT } 'Izl""’Nrec (4)

where (P,T)r are the averaged pressure and temperature within the recess, and (o, ,fr )r are the
fluid density, fluid compressibility coefficient and thermal expansion coefficient, respectively.
Recall that the fluid material coefficients are defined as

[1ap 10p
Pp _{pap} bPr= LD 8T}p )

The mass flow (Mg) through the orifice is given in terms of the pressure drop from the feed line

at supply pressure (Ps) to the recess inlet pressure (Pg), i.e.

1/2

Mg =Cq Ay [ZIOROi (PS Pri )]. -1 ©6)

where A, = d is the orifice area and Cg is an empirical discharge (loss) coefficient. The mass
flow rate Ieavmg the iy-recess through its boundary (7) and into the thin film lands is given as
M =f pHU -5 dI; (7)
with the fluid velocities evaluated from the governing equations on the film lands.

A global flow energy balance is also accounted for at the bearing recesses. The simple model
includes the mechanical energy dissipated by viscous shear, the heat-carry over (advection) from

upstream conditions and the thermal mixing effects. The transport of thermal energy equation
within a bearing recess is written as:

o(pT o
<CpVR%:CPMRTS— $C,T(oH U).ndF+TOR_Q> 8)
i=1,...N

IR



where Tor IS the shear viscous drag torque on the recess area.

The analysis also considers the circumferential bulk-flow and pressure rise within the hydrostatic
recesses as a one-dimensional Rayleigh-step bearing. The simple model also includes the
momentum transfer due to angled fluid injection against shaft direction. San Andrés and Childs

(1997) provide full details on this analysis. The edge recess pressure (PR‘e ) just before the inlet to
the film lands is given by the approximate relationship (San Andrés, 1995):

b
Pe. = Py + 4 —R(K‘U —K —j )
Re 'R R2(H+HR)2 ! R

where bg is the circumferential length of a hydrostatic recess’.
High-speed thrust bearings can develop significant centrifugal flow effects. San Andrés (1997)

presents a simple model for prediction of the radial pressure rise within the recess region due to
the centrifugal fluid acceleration. The radial pressure within the recess is given by:

2
u 24k U_R
fRJ AR TRT ns) (10)
Yo,

P=Py+Py |(s? —1}1+
R Rdyn ( ) (SUeR (H'*‘HR)ZU;R

i=1,...Nrec

where (s=R/Rg), and (U, ,U,. = a Q2 Rg) are the radial and circumferential bulk-flow velocities

within the recess, and PRdyn :% o, U§R is the dynamic pressure head due to centrifugal fluid

inertia. The expression above shows the variation of recess pressure due to the following effects:

a) viscous shear decreasing the pressure as the radius grows, i.e. towards the outer side of the
bearing.

b) centrifugal forces due to fluid rotation which raise the pressure towards the outer radius of
the recess, and

c) advection of fluid momentum in the radial direction that decreases the pressure as the radius
within the recess grows.

The viscous and centrifugal fluid inertia effects on the generation of the recess pressure field,
equations (9) and (10), are superimposed. This assumption is grounded on simplicity rather than
on a thorough analysis of the complex flow field within the hydrostatic pockets.

The local acceleration of fluid from a deep recess into the thin film lands causes a sudden
pressure drop. The pressure (PFje )at the entrance to the film lands is modeled from Bernoulli’s

equation as,

! Note that this length varies in the radial direction.



R R P 2 G R T
Pre =Pr. + 5 Pe |1 o7 \H+Hq Ubp (11)

where & ={§i &o Can S } are empirical entrance loss coefficients for the edges of a recess at its

inner radius, outer radius, upstream and downstream circumferential directions, respectively. The
sudden pressure drop is accounted for only if the fluid flow effectively enters the thin film lands.

Governing equations in dimensionless form
Let dimensionless coordinates and flow variables be defined as:

U U — P-P —
= ,T:a)*t ’ h—H X ur: r ; uez '9’ P: a ’ T:l,
K * U* U* PS - Pa T*
C Y H (12.a)
- P . —_H = p ) B . i1 S
=—; u=-—; C, = ; =T. fr; Hg = ; He =

P Py H L p Cyr Pr Br B Hy s He

- . cz(pP,-P,) -
where the (*) denotes characteristic values, and with U, E-— 22 as a characteristic

u R,

pressure flow velocity. Dimensionless orifice and recess outflow mass flow rates, recess area and
volume are defined as

Mg, =20 - =—R- =R 12.b
R (pe Ul CoRY) RR? R (12)

R2 C.

The bulk-flow equations of motion on the thin film lands become in dimensionless form:

continuity:
,oph) 10(rphu) 10(phuy)_, (13)
or r or r 06
radial momentum:
— — 2 — — =
Re,. aa(ph“f)+la(rph“fLia(phur “9)—15hu§ ey =P (13.b)
or r or r 06 r h or

circumferential momentum:




ph ph phuj
Re . aa('o u9)+£8(rp uru9)+£8(p u9)+£,5huru9
or r or r 06 r
(13.c)
m 1 hoP
+ | kyUy——kKg AT | =— ———
h(Kg 07" j Y
energy transport:
Re ) — ohT ohu. T ohu, T Re . \,— _— \—
", _o(phT) o(phu,T) 148(phu,T)] (Re, (7, + 7 )T =
E. or or r 00 E.
Rep V(oo = — =\ = —( aop 0P 1 0P
" |(HgTg +HTg )+ frhT |0 —+Uu, —+=u, —
( EC j( B'B S S) ﬂT o ot r or r 1% 00 (13d)
1 OP u 1
+5Ah%+ 5 |:K9 (uf Ui +=4 rugj}r—[zcs/l r(z/l r-ugﬂ
R. oR,
where A= U and a:U— are the shaft speed and frequency numbers.
Remz[MJﬁ* is a nominal Reynolds Number due to pressure flow, and
ﬂ* 23
. @.C2 2
Re, =Rep« 0 =| — | is a squeeze film Reynolds number. E, = is the Eckert heat
/rl* * p*

transfer number, and (ﬁB Hs ) are dimensionless convection heat transfer coefficients. The

Re .
ratio ( Ep J may be interpreted as the effect of heat convection relative to shear dissipation.
C

In dimensionless form, the mass conservation equation at the i,-hydrostatic recess takes the
form,

|V _ (- 0P - oT

Mg =M +opp | —+Vri1Be—— — Br — 3 =1 Ny (14.2)
or or o7 | o

where Mg =a | Proi (1-Px |2, and M, =§ pha-7dT; (14.b)

with an orifice parameter defined as,



Cd Ao (2 P+ [Ps - I:)a ])1/2

= 15
Ro (,0* U, C. R*) ( )
The energy transport balance within a bearing hydrostatic recess is written as:
T o o (B L
<CpVRITCPMRITS—If C,T(phu)jdry + Rec Tor; A (16)
R P = N

The circumferential and radial pressure rises within the iy,-hydrostatic recess are given in
dimensionless form as:

Pre =Py +ER@R—rR2("€“9 s Arj o
2(h+hg) 2 Jr i=1,....Nrec
2
- u 2u kour
P=P; +Pg, (32_1) 1+ —R - £ o w In(s) (17.)
n _ 2112
SUg, Re,. p(h+hg ) Ug,

i=1,...Nrec

while the entrance pressures to the film lands bounding the ix-hydrostatic recess are expressed
as,

B- :|3++(1+§)Re oo l1- Pe h 2 u? (18)
Re Re 2 P e ﬁg, h+hR r@
i=1

Film thickness expression and boundary conditions

The thrust hydrostatic/hydrodynamic bearing maybe composed of:

a) asingle continuous (360E) pad with (Nrc) recesses distributed around the bearing area, or

b) a number of pads (Npaq) Separated by radial grooves. Each pad may contain one or more
recesses.

For a bearing pad of angular extent ( /paq) and with its leading edge at the angular location
(/) paa), the film thickness including circumferential (#2) and radial (#) slopes is given by
(Pinkus and Lund, 1981):



e
sin[@—p""d—@I padJ
H 1 2 -
h=—=1+=-060| 1-Kr

e
sin[ pad J
2

) - _ (19)
O pa O pad
cos( ;a J cos[@—;&‘—@,_pad]
- cos( pad j
2
where, referring to the geometry presented in Figure 2, 66 :(H1 C_: H, ); or :(H3 ; H“) , are the

slopes (taper) in the circumferential and radial directions, respectively.

K71 :|:1_l( ROUt B I:QII’I )

5 }with C=H; as the film thickness at the midpoint of the pad trailing

out

edge.

QR

Rin

Figure 2. Description of a bearing pad and tapered film thickness.

The pressures at the inner and outer bearing radii are specified as,
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E( fin )= EDin . 5( Fout )= ﬁDout (20)

These pressures? are regarded as uniform or constant, and consequently, their variation under
dynamic shaft motions is nil.

In a 360E bearing, the fluid pressure, temperature and velocities are singled valued in the
circumferential direction, i.e.

P.T.u,,u,(r,@,t)=P.T,u,,u,(r0+2x,1) (21)

while for a bearing pad, the pressures at the leading and trailing edges are given as a (known)
function of the pressures (EDin ,5D0ut )specified at the inner and outer radii, respectively. A ram-

pressure effect due to fluid inertia at the leading edge of a bearing pad is also considered as per
the analysis of San Andrés (1996).

Note that the momentum and energy equations on the film lands are of hyperbolic character, and
consequently, no boundary conditions are required for the discharge temperature and fluid
velocities at the bearing inner and outer radii. The balance of flow leaving the bearing recesses
and entering the film lands provides the (inner) boundary conditions for the velocity fields on the
thin film flow region, see equations (18).

Perturbation analysis of the flow field

Determination of the bearing dynamic force coefficients requires of a perturbation analysis of the
flow field for infinitesimally small shaft axial motions about an equilibrium position. This
elegant procedure renders sets of zeroth- and first-order flow equations for evaluation of the
bearing static load capacity, shear torque, bearing and recess flow rates, and the dynamic force
coefficients.

Consider small amplitude ()z) axial motions of the thrust collar (shaft or runner) at frequency (7)
about an equilibrium position denoted by (hg). The film thickness is expressed in dimensionless

form with h, :(é Zj as,

*

6—h=ihle”; i=+-1 (22)

h=hy+h e’ ;

0 1 or
All the flow variables, pressure, temperatures and velocities are also expressed as the
superposition of zeroth-order and first-order flow fields describing the equilibrium and the
perturbed fields, respectively, i.e.,

¢:¢O +¢1 eiT ; ¢={ur ,Ue !ﬁv-rvﬁlﬁv’(r ;Kg le ,etC.} (23)

% The inner and outer radii pressures may be different depending on the closeness of the bearing to the discharge and
suction zones of a centrifugal impeller in a cryogenic turbopump.
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Substitution of these definitions into the thin film land equations (13) leads to the zeroth- and
first-order governing equations for the fluid flow:

Zeroth-order bulk-flow equations on the film lands

continuity:
la(rﬁo houro)+16(ﬁo ho Uao)zo (23.9)
r or r 0o

radial momentum:

1| olrpohou?d) olpyhyu,u _ 1, OP,
Rep*F{ ( gro |ro)Jr (o gero 90)_p0h0u§0 +—§K0ruroz-hoa—r° (23.b)

circumferential momentum:

Rep*i{a(rﬁo ho Uy u90)+ 8(,50 ho UZo )

+ 0o g Uy ueo}

r or 00 - (23.c)
+/Z—;)(K90 Ugo —%Kso Arj :'hTO%
enerqgy transport:
(Rep*]c—: { 0P oho o To) 1 825 by ugoT_o)}+ [Rep*)(ﬁ )T, =
E, ) ™ or ro 00 e )
[R:cp* J(ITBO'FBO +HsoTso )+ Brohe Ty (ufo Z_ﬁrfhr%ueo %} (23.d)

1 0P, 1 Z 1
+§A ho 860 +h—;’{/<90 (ufo +Ujg +§A rueoj }+h—§|:1('30/1 r(z/l r-ugoﬂ

First-order bulk-flow equations on the film lands
with h;=1 for pure axial shaft collar motions, i.e. without shaft angulations or dynamic
misalignments:

continuity:
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ig(ﬁo h1+/51h0)+

(24.a)
Eé{r (,51 ho Urg + 20 Ny Uy + oo g Uy )}_i_ia{ﬁl ho Ugg + 00 Ny Ugg + 9o Ny U91}=0
r or r oo
radial momentum:
op, I
_hEZJ/rhhl+7/rrur1+7r9u91+7rPPl+7rTTl+
royh ooh
Rep*%{ 8( Lo (;):Jrourl)+ 8(,00 06;90 Ur1)+ (24.b)
_ . ou _ ou
Po ho r[|o-+ a;ojur1+po ho(a—;—zueojuel }
circumferential momentum:
h oP, — _
—?a—elzmhhl + Vol +70pUgr TV PLtVar T +
roh ooh
Rep*%{ 8( Lo ;:r0u91)+a(p0 (g;el U90)+ (24.0)
_ . ou _ ou
Po Ny (Io-r+ur0 +a—gojue1+/30 ho[" aio +U90Jur1 }
enerqy transport:
Re . | = 8(_hu 'IT) 16(_hu 'IT) . Re . — -
p Polo Y 11 Po Mo Ygo 1 — p
C +— + +io pyh C +
[Ecj PO{ or r 00 YT Po Mo E, po |1
. = . =\= A, 0P
Yn o+ 7 Uy + 779 Ugy +(7TP —io Brohy To)'Pl PRk 6_91 (24.d)

— = (. 0P Uy OP
- hoTolu. . —L4200~"1

The first-order wall shear stress coefficients ((‘s) are given in Appendix A.

Zeroth- and first-order flow equations at a bearing recess
Perturbation of the recess mass flow and energy transport equations proceeds with the following
linear combination of equilibrium and dynamic fields,

13



to render the zeroth and first-order equations for mass flow conservation at each recess, i.e.,

M Roj :5R0i [ﬁRoOi (l_ﬁRoi )]1/2 :mroi :351; Po ho l]o 1] dfi 1 i=1,.,Npge (26)
and
<— CE Pr, =M, +i(opr Ag ) by +CF T, >i:1 .... . 27)
where B
R = { 21 RSRO )[ Be (1P )]+ (Ve B pRO)}i
(28.a)
C;i = BTR {—_ i (U\TRO ERO)} ' i=1,...Nrec
i
and 'eri :§ri (21 ho Uy + 2 hy Ty + 5 Ny Uy )-7dT5 i=1,..Nyeg (28.0)

are the first-order mass flow rates through the recess boundaries into the film lands.

The first-order energy transport equation at the recess and the pressure rise/drop equations at the
recess edges are omitted for brevity.

Fluid film reaction force and axial force coefficients
The fluid film force (F2) reacting to an applied external load (W) is given by integration of the
hydrodynamic/hydrostatic pressure field on the bearing surface, i.e.,

F, =-W, =f, (P-P,)RdRd¢ (29)

Substitution of the calculated zeroth- and first-order pressure fields into the equation above leads
to the determination of the bearing load capacity and the dynamic stiffness (Kzz), damping (Cz2),
and inertia (Mzz) axial force coefficients, i.e.

F, = (P, —P, ) Ag f5 Py rdrde (30)
K,, —0*M,, +iw C,, :é(PS —P,)Ag§s Prdrde (31.9)
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In general, bearings operating with incompressible fluids lead to force coefficients independent
of the excitation frequency (7). However, compressible fluids and bearings with recesses of large
volume give rise to force coefficients that are complicated functions of the frequency (7). In this
case, the results from the model should be interpreted as frequency dependent impedance
functions whose real and imaginary parts render dynamic stiffness and damping coefficients,
respectively, i.e.,

Ky (@)+i@ Cpy (m):é(Ps—Pa)AB f P, rdrdo (3Lb)

San Andrés (1991) discusses the effects of recess volume — fluid compressibility on the dynamic
force response of hydrostatic bearings operating with compressible fluids (such as LH,) and
provides criteria to avoid pneumatic hammer (loss of damping) instability. It is important to note
that the notion of frequency dependent force coefficients does not imply these coefficients are
nonlinear in terms of the dynamics of a rotor-bearing system, i.e. the force coefficients are not
functions of the amplitude of motion®.

The shear drag torque (T,) on the rotating member is generated by the shear stresses acting on
the runner surface, and given as

U.R3 1hoP &
T = HR2ARdg=| 2™ | ¢ 29 L 2 0 ke (U, —Ar) W r2drde (32
0 jBTHR| ( c Ki 2t 00 4h{K9 0 Ks(a )} (32)

Numerical method of solution of flow equations on the film lands

A control-volume finite difference scheme is implemented to solve the coupled, nonlinear
PDEs of mass, momentum and energy transport governing the fluid flow in a
hybrid/hydrostatic thrust bearing. The flow field is represented by a series of discrete nodal
bulk-flow velocities, fluid pressures and temperatures on staggered grids (Patankar, 1980). An
advantage of the staggered grid is that the potential unrealistic wavy pressure solutions arising
from a single grid are avoided. Algebraic difference equations are obtained by integration of
the governing equations on finite size control volumes and using the full advection SIMPLEC
algorithm of Van Doormaal and Raithby (1984). The effectiveness of the numerical algorithm
has been demonstrated on the turbulent bulk-flow analysis of cryogenic fluid film radial
bearings and seals (San Andrés, 1990, Yang, 1992, Yang et al., 1994).

Let the dimensionless zeroth- and first-order bulk flow field variables {ur,ug,ﬁ,f}oll be

represented by the discrete fields {U,VF,T} and {Ul,vl,ﬁl,ﬁ}, respectively. The continuity
equation, circumferential and radial momentum transport equations, and the energy transport
equation are integrated on the P-, U-, V-, T-control volumes depicted in Figure 3 to render sets
of algebraic difference equations. Appendix B details the steps in the numerical procedure and
includes all the equations derived and as implemented in the computer program.

% Of course, this last assertion is only valid for truly small amplitude motions about an equilibrium configuration.
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P,T-control volume

U-control volume

V-control volume

U: circ. velocity
V: radial velocity
P: pressure

T: temperature

Figure 3. Staggered control volumes for integration of bulk-flow equations in
polar coordinates (r,0)

The governing difference equations on the bearing film lands are solved iteratively. An
approximate solution for the flow field variables is used to initiate the calculations®. The

velocity components {U* ,V*}are first calculated from the circumferential and radial

momentum transport equation using an estimated pressure field(ﬁ*). Next, the pressure
correction equation based on the continuity equation provides a correction pressure (E’)and
velocity fields {u’,v'}. Solution to the energy transport equation renders an estimate of the
temperature field (T) Updated pressure and velocity fields,
{U:U*+u’; V=V +Vv'; P=P" +ﬁ’}, are substituted again into the momentum equations
resulting in (generally) more accurate velocity and pressure field solutions. The iterative
procedure above is repeated until the sum of (absolute value) residuals of mass flow on the
control volumes is below a prescribed tolerance value, typically 0.1% of the global mass flow

rate on the whole domain of solution. See Appendix B for full details on the numerical
algorithm.

The numerical method proceeds to balance the flow and momentum equations in the recesses
of a hydrostatic bearing once a solution to the fluid flow equations on the film lands is
obtained with appropriate boundary conditions. A Newton-Raphson algorithm provides

* The approximate analytical model corresponds to a highly idealized geometry and overly simplified flow
condition. Nonetheless, the approximation provides a reasonable well posed field which allows rapid convergence
to the final solution.
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improved estimates of the recess pressures and velocity fields. The procedure is continued
with the solution of the equations on the film lands until convergence is obtained in both film
lands and recesses.

The iterative scheme for balance of flow at bearing recesses.

The recess pressures on each pocket of a hydrostatic bearing are updated after the computation
of the flow field on the film lands. This procedure is performed iteratively until the set of mass
flow rates into the film lands is balanced by the mass flow through each of the feed orifices in
the recesses. Recall that the zeroth-order mass conservation at each recess is given by (the
subscript “0“ is omitted for brevity):

<mfi = Mg, =3¢, ['BRi (1_|3Ri )]1/2>_=1 . (33)

At an intermediate step in the calculation of the flow field a set of “old” values of recess
pressures and mass flows into the film lands is known, i.e. {5Ri M }(O'd) . A Newton-

i=1,...Nyec

Raphson scheme allows the determination of “new” or improved recess pressures from the
balance of the flow out from the orifices with the flows into the film lands. A first-order Taylor
series expansion of the mass flow equation at each recess gives,

2
Nrec oM B.

I\W;(new):5R20. ﬁg_\ew) (1_§F§new)) _ mi(old) ¥ "B AﬁRk o (34)
i i i i i K a PRk
Where(A Pr = P& — B9 )kzli__‘,\,rec , and define
_ M 2 7
M 2. I (ptoid) |, 4p I (plid
Sik = _F' ~ (Rk + R=) (Rk ) ’ |,k = 1’2""’Nrec , (35)
PRk A PRk

as a set of mass flow (from recess to land) influence coefficients calculated with small (finite)

pressure increments (AERK N around the (old) values of recess pressure. The fluid density
=L:..Nrec

is also a function of the flow pressure and temperature; and a Taylor series expansion leads to,

0P — O0pi —
Py ~ pd + ¢ P AP, + il ATy,

I 0 I:_)Ri a-ITRl
(36)
= 599 (L4 B89 AR, - FOIAT, ), =120
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where(A‘IT = T _ T(O'd))._ are variations in the recess temperatures. Substitution of
R R R Ji=L,.Nrec

the expansions into the recess mass flow rate equations for each recess leads to the following
linear system of equations:

NI’EC _ _ _ B
5 (s auod, |1 B, (1P )y, 4T, [J00R, 0

L B B N, o)
Z{— Mlz“i +§R20i ﬁRi[l—ﬂPRk Pr (1-Pg )—ﬂTRi ATRi] + % Sik PRk}
ie, (37)

Nyee (= _ (old)
Id .
% {Sik }(o )ka(new) :{rhs}i i1 Ny,

1, if i=k

) , and from which updated (new) recess pressures are obtained in the
0, otherwise

where 5ik {

. . . — — _ — \[L/2
iterative process until <M[i =M R =5R0i [pRi (1— PRi )] >

The numerical procedure of the iterative scheme is described briefly as:

a) Given initial recess pressures (Eé‘“d )) , calculate the discrete flow fields

i=12,...Nyec

[U*V* P*T* and (ﬂ:‘ ) ... Jon the thin film lands of the bearing.
»INrec

b) Given a pressure increment to the kg, recess (4 F_>Rk ) while all the other recess pressures
remain unchanged, P{°®’, i # k., recalculate the corresponding thin film land flow fields,
, and (A'I'—F:I) , for

and determine the mass flow influence coefficients, [S; ] i1 N
T =4-»Nrec

..... Nrec

all recesses in the bearing or pad.

c) Reset the flow fields to the original ones, {U*, V*,P* T*, and (T_F:I) }, calculated in
ec

i=1,...Ny.

step (a) and return to step (b) until all the recesses (k =1, 2,..,Nrec) are covered.

d) Solve the system of equations (37) to update the recess pressures to (5F§inew))i Lo N
=Lt rec

e) Return to step (a) and replace the initial recess pressures (ﬂ(i"'d))i L, ... by the updated
=12,., rec

ones (5F§i”ew>)i L, ..  Theiterative process continues until the difference of the orifice
=Lz rec
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mass flow, (I\WRi ) , and flow rate into the film lands, (I\WBi ) \...» for each recess

i:1,2 ..... N rec i=1.2,..., rec

is within a tolerable value (about 0.6%).

Numerical solution of the first-order bulk-flow equations
Once the solution to the zeroth-order equations on the bearing film lands and hydrostatic

recesses has been obtained, the (perturbed) first-order flow fields {U1 V., P, ﬂ} are calculated
for a given frequency (T).

The first-order equations are linear with coefficients fully determined by the zeroth-order flow
field. The linearity of the equation enables a solution of the first-order flow field to be found by
the component (superposition) method introduced by San Andrés (1990). In this procedure, the
first-order flow field solution is given by the form,

Nree . — — —
=43+ 3 4 P 16:=[UVPT] (38)

The first part in the components field, ¢ 2 , Is the solution to the non-homogeneous form of the
first-order equations with the first-order recess pressures, {5% } =0. The second part
|

=1,..Nrec

the homogeneous form of the first-order equations, i.e. with{h, } =0, and a complex unit value

for each recess pressure, i.e., {5% } -, =(1+i).
I=1,..Nrec

The numerical scheme for the first-order equations on the film lands follows closely the one
adopted for the zeroth-order equations. The same steps are followed for the solution of both the
homogeneous and non-homogeneous first-order flow equations. Once all field components have
been calculated, the first-order flow field is substituted into the first-order mass flow equations
for each recess, equation (27), and a linear system of complex algebraic equations is obtained for

calculation of the first-order recess pressures {5% } , 1Le:
i=1,..Nrec

M2 = (ohy + Bohol? + 50Nty ) - AT,
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(40)
M}("i = §1_i(,50h0l]f+/_)1kh0l]0) -ndrg,

are the Ow- and ki,-component first-order flow rates into the film lands at the boundary of the iw-
recess ().

The first-order mass conservation equation (39) at the recesses has the same form as the zeroth-
order equation (27). However, the first-order equation represents a system of algebraic equations
in the complex number domain, while the zeroth-order equation contains only real numbers and

variables. Note that the set { 5R'i =1, nrec IN €quation (39) needs to be evaluated only once since

the first-order equations are linear and the superposition principle applies. On the other hand,
{E{(k”ew)}mwmc in the non-linear equations (27) are calculated iteratively until the recess flows

balance the orifice flows.
Once the zeroth-order and first-order flow field are obtained, the fluid film forces and the

dynamic force coefficients are calculated by integration of the zeroth- and first-order pressure
field over the bearing surface, see equations (30) and (31).
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THE COMPUTER PROGRAM HYDROTHRUST

The computer program developed in Fortran 90 is hamed hydrothrust and runs as a
console application in a personal computer under the MS Windows operating system.
The software package includes a windows based help file (hthrust.help) and several
examples featuring the options and capabilities of the program.

hydrothrust calculates the static and dynamic force performance characteristics for the
following bearing types:

1. hydrostatic / hydrodynamic thrust bearings with orifice compensation,

2. annular face seal with a pressure drop from inner diameter to outer diameter,

3. plain hydrodynamic thrust bearings.

hydrothrust includes the following thermal models:

- adiabatic surfaces, i.e. insulated shaft and bearing surfaces.

- isothermal shaft at specified temperature and insulated (adiabatic) bearing.
- isothermal bearing at specified temperature and insulated (adiabatic) shaft.
- isothermal shaft and bearing surfaces.

- isothermal shaft and radial heat flow through bearing (stator).

- adiabatic shaft and radial heat flow through bearing (stator).

hydrothrust provides numerical predictions of:

e Dearing flow rate or seal leakage

e friction torque, power dissipation and temperature rise,

e load capacity if bearing minimum film clearance is given, or bearing film clearance if
the external thrust load is given.

o axial stiffness, damping and inertia force coefficients evaluated at a specified
excitation frequency.

with the following (single phase) fluids:
(1) parahydrogen, (2) oxygen, (3) nitrogen, (4) methane, (5) water, (6) oil, (7) air,
(12) barotropic fluid.

A detailed description of the program operation and input/output calculation options is
given in the help file hthrust.help.

NUMERICAL RESULTS AND DISCUSSION

The analysis and computational program are applicable to a wide range of thrust bearing
applications including low speeds and pressures with viscous mineral oils (laminar flow
bearings). However, the present development constitutes an advanced model for high
speed hydrostatic / hydrodynamic thrust bearings for implementation in modern compact
cryogenic liquid turbopumps. Unfortunately, experimental results for this application are
not (yet) available in the open literature. Yet, undoubtedly, the interest on this novel fluid
film bearing technology will render shortly important advances and actual applications.

Numerical predictions for thrust bearings operating in the laminar flow regime are given
as examples in the hydrothrust software bundled package. Comparisons have been
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performed with numerical results of Hashimoto (1989) and Zirkelback and San Andrés
(1996) for hydrodynamic thrust bearings. These examples are omitted here for brevity.

Two high speed hydrostatic/hydrodynamic thrust bearing applications are hereby
discussed at length. The first one corresponds to a thrust bearing geometry for the
advanced liquid hydrogen (ALH) turbopump at nominal operating conditions, and the
second example refers to a dual application hydrostatic thrust bearing for implementation
in commercial (oil free) R134a compressors.

Example of a hydrostatic thrust bearing for a cryogenic turbopump
Table 1 lists the geometry and operating conditions of a liquid hydrogen, eight recess
hydrostatic bearing for an advanced cryogenic turbopump. The pump design is uniquely
compact with a low number of parts, and relies on hydrostatic radial and thrust fluid film
bearings for accurate positioning of the rotor. Sound design and reliable operation of the

fluid film bearing elements also allow for unshrouded impellers with a significant
increase in the pump mechanical efficiency.

Table 1. Hydrostatic thrust bearing for an advanced cryogenic fluid turbopump

Geometry, Ny =8

SI dimensions

English dimensions

Inner diameter, Dj, 48.26 mm 1.9 inches

Outer diameter, Dy 99.06 mm 3.9 inches

Recess diameter, Dg 73.66 mm 2.9 inches

Recess radial length, Lg 10.16 mm 0.4 inches

Recess arc length, 75 22E

Recess depth, Hg 0.254 mm 0.0100 inches

Film clearance 0.038 mm 0.0015 inches

Recess/Bearing area ratio 0.25

Orifice diameter Varies

Empirical parameters

Orifice discharge coefficient, Cyq 0.90

Entrance loss coefficients, 0.00

>tis >roy >2u >2d

Inlet swirl coefficient, v 0.50

Reynolds numbers Re.=162,740 Re;=125.2
Operating conditions Sl units English units
Speed (%) 17,802 r/s 170,000 rpm
Surface speed, ZRj, , ZRqu 442 — 908 m/s 1450 — 2979 ft/s
Fluid: liquid hydrogen,
Supply temperature, T, 45 EK 81 ER
Supply pressure, Ps 393 bar 5,700 psia
Exit pressure, P,=Ppin=Ppou 81.6 bar 2,200 psia

Fluid properties
(supply/discharge)
Density, [4s, 4, ]
Viscosity, [s, 2]

Sound speed (V,V,)

Fluid bulk modulus (1/%)

(81.6, 65.3) kg/m®
(0.0173, 0.0095) mPa.s
(1793, 1299) m/s
1,206 bar

(5.09, 4.08) Ib/ft®

(0.0025, 0.0014) Reyns
(5882, 4262) ft/s
17,495 psi
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The operating conditions are extraordinary in terms of the high rotational speed (170
krpm) and available supply pressures. Note the large values of the shaft collar surface
speeds (2R), ranging from 442 to 908 m/s for the inner and outer radii, respectively.
Furthermore, the large magnitude of the circumferential flow Reynolds number,
Rec=As2RouCl s = 162,740, denotes a highly turbulent flow regime with dominance of
fluid inertia effects.

The analysis example considers a fixed clearance (C) equal to 38:m and intends to
determine the orifice diameter necessary to achieve the maximum axial thrust stiffness.
The numerical computations are carried out for increasing values of the recess pressure
ratio, Pratio=(Pr-Pa)/(Ps-Pa), spanning from 0.1 to 0.9. The optimum stiffness condition is
achieved at a particular recess pressure ratio, typically around 0.50 for laminar flow
conditions. The example assumes that the turbopump has two thrust bearings acting in
parallel, both balancing the thrust from the uneven axial pressure distribution in the
impellers. The author has not been able to find (yet) definite information regarding the
magnitude of the thrust loads at the operating point.

The numerical computations demonstrate the paramount effect of fluid inertia on the film

lands of the thrust bearing as well as at the edges of the bearing recesses. The following

figures depict computed results from three fluid flow models,

a) full inertia, includes fluid inertia (advection and centrifugal) at the film lands and
recess edges,

b) recess edge inertia, accounts only for the sudden pressure drop at the recess
boundaries as the fluid flow accelerates towards the film lands,

c) no fluid inertia, i.e., equivalent to the solution of the turbulent flow field within the
film bearing lands as given by the classical Reynolds equation.

Figure 4 depicts the calculated orifice diameter versus the pratio for the thrust bearing, and
determined from the balance of flows through the orifices and the flow into the film
lands. The model without fluid inertia renders the largest orifice diameters denoting
larger flow rates (see later Figures 7) since fluid inertia acts as an additional flow
resistance, in particular at the recess edges. Figure 5 shows the axial fluid film bearing
reaction force versus the recess pressure ratio. The full inertia model renders
approximately 23% less load capacity than the inertialess fluid flow model. As the pratio
increases (larger orifice diameter) the load also increases proportionately. However,
larger loads are also accompanied by larger flow rates and lower stiffness coefficients, as
will be seen shortly. The bearing reaction force is approximately equal to 31.6 kN (7,100
Ibs) at a pratio=0.55 for the full inertia model. The significant load magnitude is (tough)
23% of the bearing specific load given by (Ps-P,)Asg.

Figures 6 depict the calculated pressure profiles for the thrust bearing as determined from
the full inertial model. The top figure shows the pressure at the radial location
corresponding to the recess (and orifice) diameter versus the circumferential coordinate
and for decreasing pressure ratios. The bottom figures display the pressure contours and
pressure surface over the bearing for a praio=0.50. Note the large (sharp) drops in fluid
pressure at the recess edges (downstream and radial). Note that the pressures in the film
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lands are quite low, thus indicating a dominance of fluid inertia effects. Furthermore, for
the lowest pressure ratio, praio=0.1, the minimum pressure within the film lands is lower
than the discharge pressure (151.7 bar) due to the rapid fluid acceleration as it leaves the
recess volumes.

Figures 7 display the bearing mass flow rate (M) versus the recess pressure ratio
(increasing orifice diameters). The bearing flow rate increases steadily as the pratio
increases, and the full fluid inertia model shows the smallest flow rates. Figure 7(b)
depicts the mass flow rates leaving the bearing through the outer (Mgoyt) and inner (Mgin)
radii, and where M=Mgou+Mgin. Note that the flow through the inner diameter is much
lower than the flow through the outer radius. The difference is most obvious for the full
inertia model due to the centrifugal fluid inertia effect.

Figures 9 through 11 show the stiffness (Kzz), damping (Czz), and inertia (Mzz) axial
force coefficients versus the recess pressure ratio for the three flow models. Note that
only the full fluid inertia model renders inertia force coefficients. The stiffness
coefficient (Kzz) has an optimum value for a praio~0.5-0.65 depending on the fluid flow
model. Note that the full inertia model provides the lowest stiffness magnitudes while the
recess edge inertia model predicts an optimum force coefficient for a larger recess
pressure ratio. The damping coefficient (Czz) has a maximum for low values of praio, and
the full inertia flow model provides the largest damping values. The predicted results
show similar trends as in radial hydrostatic bearings operating at high Reynolds numbers
(San Andrés, 1990). The test measurements of Franchek, et al. (1995) for water
lubricated hydrostatic radial bearings provide further evidence on the effects of fluid
inertia reducing the stiffness and increasing the damping coefficients for high rotational
speed operation.

Figure 10 shows the inertia force coefficient (Mzz) to decrease steadily as the recess
pressure ratio increases with a minimum value at a praioc~0.5. The negative value is due to
the fluid compressibility and indicates the frequency dependency of the force
coefficients. Note that for shaft vibrations with a frequency synchronous with the
rotational speed, i.e. at 2,833 Hz, the inertia force coefficient although small could
introduce (in general) a marked de-stiffening effect.

Figure 11 depicts the drag torque versus the recess pressure ratio for the three fluid flow
models. The largest torque and associated power loss are determined from the no fluid
inertia model. Note that at a praiiv=0.50, the power loss, i.e. the product of the torque
times the rotational speed, is equal to 97.4 kW (130.5 Hp). This large magnitude is
essentially due to the smallness of the film clearance (0.038 mm).

Figures 12 and 13 depict the maximum values of the bulk-flow Reynolds number and
fluid speed within the fluid film flow region. Note that the full inertia model predicts the
largest fluid speeds and Reynolds numbers, thus explaining the larger damping
coefficients since the viscous dissipation of energy is the greatest. The most important
finding is related to the very large bulk-flow fluid speeds (and Reynolds numbers) which
are as large as the shaft speed at the bearing outer diameter (~900 m/s). Note that the
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sonic speed for LH, is just 1,300 m/s at the bearing discharge planes, and consequently,
the flow Mach numbers are around 0.50 for most pressure ratios.

Example of a hydrostatic thrust bearing for a refrigerant compressor
Table 2 presents the geometry and operating conditions of a six recess hydrostatic thrust
bearings with R134a refrigerant for a commercial compressor application. The bearing
design demonstrates the successful extension (dual use) of the cryogenic fluid film
bearing technology to a process fluid film bearing application. In this example, the
bearing geometry is specified including the orifice diameter'. The operating film
clearances, between 12.7 um to 101.6 um, are calculated for a range of thrust loads at
two operating speeds, 10 and 16 krpm, and pressure drops equal to 5.17 and 10.34 bars
(75 and 150 psi), respectively. The predictions include the full fluid inertia and recess
edge inertia models to demonstrate the paramount effect of land fluid inertia on the
performance characteristics of the thrust bearing.

Table 2. Hydrostatic thrust bearing for R134a compressor application

Geometry, Ni=6 SI dimensions English
dimensions
Inner diameter, Dj, 89.13 mm 3.51 inches
Outer diameter, Dyt 126.8 mm 4.99 inches
Recess diameter, Dg 108.6 mm 4.28 inches
Recess radial length, Lr 11.68 mm 0.46 inches
Recess arc length, 7z 24 E
Recess depth, Hr 0.508 mm 0.0200 inches

Film clearance
Recess/Bearing area ratio

0.012-0.101 mm
0.25

0.0005-0.004 inches

Orifice diameter 1.70 mm 0.067 inches
Empirical parameters

Orifice discharge coefficient, Cyq 0.80

Entrance loss coefficients, 0.0,0.0,0.0,-0.5

>riy Zroy >2uy >2d

Inlet swirl coefficient, v 0.50

Operating conditions Sl units English units

Speed
Fluid: R134a refrigerant

1047.2 - 1,675 /s

10,000 - 16,000 rpm

Supply temperature, T, 311 EK 560 ER (100 EF)
Supply pressure, P 18.96 - 24.10 bar 275 - 350 psia
Exit pressure, P,=Ppin=Ppout 13.80 bar 200 psia
Saturation pressure, 9.63 bar 139 psia

Fluid properties

Density, A, 1210 kg/m® 75.54 Ib/ft®
Viscosity, . 0.000198 Pa.s 0.0288 -Reyns
Fluid bulk modulus (1/%) 1,820 bar 26,667 psi

Figure 14 shows the equilibrium film clearance (C) versus the thrust load for the two
operating conditions at 10 krpm and 16 krpm. The full fluid inertia model predicts
smaller film thickness than the recess edge fluid inertia model, and the bearing with the

! The orifice discharge coefficient selected is based on prior experiences with hydrostatic radial bearings.

25



larger pressure drop, i.e. Ps=24.1 bars, shows a larger load capacity. In the following, the
calculated results are presented in dimensionless form in an attempt to identify unique
trends independent of the individual physical parameters.

Figure 15 depicts the equilibrium recess pressure ratio, pratio=(Pr-Pa)/(Ps-Pa), versus the
dimensionless load capacity, Wz=Wz/Ag(Ps-P,), for the two operating conditions. The
recess pressure ratio increases as the thrust load increases (decreasing film clearance),
and the fluid inertia model predicts larger recess pressures since it acts as an additional
flow resistance at the film lands. Figure 16a shows the bearing mass flow rate ( M) to
decrease steadily as the load Wz increases (smaller film thickness and larger pratio). The
mass flow rate is made dimensionless with respect to NrecCaAo(Y20s[Ps-Pa])"?
representing the orifice flows from supply to ambient conditions. The full fluid inertia
model shows slightly smaller flow rates. Figure 16(b) depicts the mass flow rates leaving
the bearing through the outer and inner radii, with M= Mgou+ Mgin. The recess edge
inertia model predicts an inner radius flow slightly smaller than the outer radius flow
since the flow area is smaller. However, the full inertia model which includes the effects
of centrifugal fluid inertia shows an outer radius flow much larger than the inner radius
flow, in particular at low loads (small recess pressures and large clearance). In fact, the
flow through the inner radius could be negative, i.e. the fluid is actually drag into the
bearing due to a local suction (less than ambient) pressure at the film lands. The opposite
effect occurs at the bearing outer diameter where more fluid is thrown away due to the
large centrifugal inertia force. This force is proportional to the circumferential flow
Reynolds number, Re.=(oR,.tC/ 1), which increases as the clearance also increases (see
Figure 22 later for the magnitudes of the maximum flow Reynolds numbers in the
bearing). The calculated results thus indicate that operation with large clearances may
cause fluid starvation (not a full fluid film) in certain regions of the film lands.

Figure 17 shows the dimensionless stiffness coefficient, K,;=K,,C/Ag(Ps-Pa,), versus the
dimensionless load W, at the two operating speeds and pressure supplies. The
magnitudes of the stiffness coefficients are similar for both flow models, although the
optimum stiffness occurs at a lower load (praic~0.6) for the full inertia model. Figure 18
shows the dimensionless damping coefficient, C,=C,,C(YAg(Ps-P5) to increase steadily
for small to moderate values of the dimensionless load W,. However, a large increase in
damping is apparent at the largest loads and due essentially to the smallness of the film
clearance (see Figure 14). Note that the full fluid inertia model predicts much larger
damping coefficients for the entire range of thrust loads.

Figure 19 shows the dimensionless inertia coefficient, M,=M,,C(¥/Ag(Ps-P.) decreases
as the dimensionless load W, increases. The physical values of the inertia coefficient
range between 1.8 to 5.2 kg and could affect substantially the dynamic stiffness of the
bearing, K,s=Kz-M,<¥ as shown in Figure 20. A comparison with the results given in
Figure 17 shows that the bearing dynamic stiffness Kyyq is approximately 20% lower
than the value predicted by the recess edge inertia model. This reduction is a direct effect
of the fluid inertia (centrifugal and advection) at the film lands.
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Figure 21 shows the torque To=« versus the dimensionless load W,. The drag torque is
made dimensionless with respect to the reference formulae

65 11,02 AgR, : : -
Tor = (1+0.024 [0.42 Rec]%S)%, obtained using the turbulent shear friction

factor from Constantinescu (1962). Note that a reference drag torque value based on
laminar flow conditions would render dimensionless torque values one to two orders of
magnitude larger than the ones depicted in the figure. The calculated results show a
similar drag torque for the two operating conditions and decreasing as the dimensionless
load increases. Of course, the physical magnitude of the drag torque increases as the load
magnitude increases since the film clearance is smaller.

The maximum bulk-flow Reynolds numbers and half the magnitude of the nominal
circumferential Reynolds number, ¥2 Re.=(pRouC/24), are shown versus the recess
pressure ratio in Figure 22. The bulk-flow Reynolds number is based on the maximum
calculated fluid speed in the bearing flow region. Larger Reynolds numbers are a direct
result of the shaft speed and larger film clearance as the recess pressure ratio decreases
(smaller loads). The calculated results show that the flow-Reynolds numbers are very
similar to the nominal circumferential Reynolds number, and thus demonstrate the
dominance of hydrodynamic effects. The full inertia model predicts larger Reynolds
numbers, i.e. larger fluid speeds, due to the centrifugal inertial effects and the rapid
acceleration as the fluid leaves a recess a flows into the film lands.

Figure 23 shows the predicted maximum and minimum dimensionless pressures,
(Pmaxmin-Pa)/(Ps-Pa), in the bearing flow region versus the recess pressure ratio,
Pratio=(Pr-Pa)/(Ps-Pa). The predicted results are of importance since they reveal
significant features about the full fluid inertia model. First, the maximum film pressures
are larger than the recess pressure at the orifice discharge plane since due to viscous and
centrifugal fluid inertia effects there is a marked raise in the pressure at the recess corner
facing the downstream edge and outer diameter. Note that for a praiioc=1 the peak film
pressure is 40% above the supply value. Second, the minimum film pressures are lower
than the discharge pressure ( P=0) and the lowest magnitudes are achieved at the lowest
recess pressure ratios. The appearance of the subambient film pressures, nearly 40%
below discharge value (recall P,=12.8 bar, 200 psia), is a direct result of the fluid (inertia)
acceleration just downstream of a recess edge. The recess edge inertia model does not
predict any subambient pressures.

At the operating conditions, the refrigerant saturation pressure is 9.63 bar (139 psia), and
in dimensionless form (Psatwration-Pa)/(Ps-Pa) equals —0.81 and —0.405 for the cases with
pressure drops (Ps-P,)=5.17 and 10.34 bars (75 and 150 psi) at 10 and 16 krpm,
respectively. Thus, the thrust bearing operating at the largest rotational speed is likely to
show fluid vaporization at the downstream edge of a hydrostatic recess! The current
model is not (yet) able to model properly two-phase flow conditions, although Arauz and
San Andrés (1998) have advanced some relevant analytical work. Nonetheless, the
predicted results caution the operation of the thrust bearing under such stringent fluid
flow conditions.

27



Figure 24 displays the calculated pressure fields from the full fluid inertia model. The top
plots show the pressure field at the pocket (orifice) diameter versus the angular
coordinate for various recess pressure ratios. Note the sharp pressure drops at the
downstream side of a bearing recess. The bottom figure depicts the pressure surface and
contours for a praiv=0.5 at 16 krpm. Note the pressure raise towards the downstream edge
of a recess, and immediately the large pressure drop causing a rapid acceleration of the
fluid.

As a note aside the present discussion, it is worth mentioning that the procedure
implemented to render dimensionless bearing performance variables (load, flow,
stiffness, etc) gives meaningful results which could aid to a fast (and reliable) design of
turbulent flow hydrostatic/hydrodynamic thrust bearings.

CONCLUSIONS

A bulk-flow analysis and computer program for prediction of the static load performance
and dynamic force coefficients of angled injection, orifice-compensated hydrostatic /
hydrodynamic thrust bearings have been completed. Advanced cryogenic fluid
turbopumps are very compact, operate at extremely high shaft speeds, and require of
hybrid (hydrostatic / hydrodynamic) radial and thrust fluid film bearings for accurate
rotor positioning. Sound design and reliable operation of the fluid film bearing elements
also allows for unshrouded impellers with a significant increase in the turbopump
mechanical efficiency.

The analysis accounts for the bulk-flow mass, momentum and thermal energy transport,
includes flow turbulence and fluid inertia (advection and centrifugal) effects on film
lands and recesses, and incorporates cryogenic fluid properties using a NIST data base.
The computer program predicts the flow rate, load capacity, power loss and axial
dynamic force coefficients for rigid surface, tapered land hybrid thrust bearings.

Two high-speed hydrostatic/hydrodynamic thrust bearing applications are analyzed. The
first one corresponds to a thrust bearing geometry for the advanced liquid hydrogen
(ALH) turbopump at nominal operating conditions, and the second example refers to a
dual application hydrostatic thrust bearing for implementation in commercial (oil free)
R134a compressors.

The computed predictions reveal that the ALH bearing load capacity and flow rate
increase with the recess pressure (i.e. increasing orifice diameters) at the nominal
operating condition. The bearing axial stiffness has a maximum for a recess pressure ratio
~0.55, while the axial damping coefficient decreases as the recess pressure ratio
increases. The computer results from three flow models are compared. These models are
a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess
edges and film lands. The full inertia model predicts the lowest flow rate, axial load
capacity and stiffness coefficient, yet it renders the largest damping and inertia force
coefficients. Some fluid compressibility effects are apparent in the application. The most
important findings are related to the reduction of the outflow through the inner radius and
the appearance of subambient pressures on the bearing film lands.
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The performance of the refrigerant hybrid thrust bearing is evaluated at two operating
speeds and pressure drops. The computed results are presented in dimensionless form to
evidence consistent trends in the bearing performance characteristics. As the applied axial
load increases, the bearing film thickness and flow rate decrease while the recess
pressures increase. The axial stiffness coefficient shows a maximum for a certain
intermediate load (recess pressure ratio) while the damping coefficient steadily increases.
The computed results evidence the paramount of centrifugal fluid inertia at low recess
pressures (i.e. low loads), and where there is actually an inflow through the bearing inner
diameter along with subambient pressures just downstream of the bearing recess edges.
These results are solely due to centrifugal fluid inertia and advection transport effects.

RECOMMENDATIONS

Further research is recommended to extend the analysis and continue the software
development to include bearing geometries and operating conditions more representative
of actual practice. In addition, the enhanced computer program should aim to satisfy the
needs of commercial turbomachinery applications and to render a design tool of a broad
engineering use. The flow model is currently restricted to axial shaft (collar) motions
without angular misalignment. Thus, the analysis of the bulk-flow for shaft dynamic tilts
in two planes is of importance to determine restoring torques and moment force
coefficients.

Many hydrodynamic thrust bearings are composed of rigid pads with machined tapered
lands. However, this low-cost bearing configuration can only be optimized for a narrow
range of operating load and (low) speed conditions. High performance turbomachinery
requires of tilting pad hydrodynamic thrust bearings able to adapt and configure to wide
ranges of loads and speed conditions. In these bearings the pads rotate about spherical
pivots to form the (wedge) hydrodynamic film able to support an axial load and without
the need of a machined tapered surface. Some particular tilting pad thrust bearings are
also supported on complex structural (springs) elements allowing the control of axial
angular rotor misalignments. The major disadvantages of tilting pad bearings are their
cost, complexity in manufacturing and stack up of tolerances on assembly. Furthermore,
conventional tilting pad bearings are not easily modified to allow for a hydrostatic feed
and external pressurization.

Submerged water pumps integrate a particular type of hydrodynamic thrust bearing
where each sector pad is attached to a bearing support with a structural (elastic) radial
web designed to provide a low stiffness restraint to pad angular motions, thus forming the
hydrodynamic film wedge which generates the load support. Furthermore, the flexural
webs also offer a feasible path for a hydrostatic fluid feeding port, thus allowing for an
increased bearing load capacity and immediate application in a cryogenic fluid
environment. The structural pad supports could also be engineered for the bearing to
control dynamic angular rotor misalignments.

The fluid mechanics of highly compressible fluid media operating at near sonic
conditions and with two-phase flow generation and transition from liquid to gaseous
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states are also regarded as important in the near future. The analyses of thrust foil
bearings and spiral grooved thrust bearings are also noted as important for future work.
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Orifice diameter (mm)

HTB axial load (N)

LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=P0o=152 bar, T=45 K, C=38 um
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Figure 4. Orifice diameter vs. recess pressure ratio for ALH thrust bearing.
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LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=P0o=152 bar, T=45 K, C=38 um
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Figure 5. Fluid film force vs. recess pressure ratio for ALH thrust bearing.
(Effects of fluid inertia at film lands and recess edges)
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8 recess LH2 bearing: 170krpm, Ps=393 bar, Pa=151.7 bar
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Figure 6. Pressure distributions for LH2 thrust bearing. (a) at pocket diameter for varying
pressure ratios, (b) pressure contours and (c) pressure surfaces for pratio=0.50
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Flow rate (kg/s)

Flow rate through outer and inner diameters (kg/s)

LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=P0o=152 bar, T=45 K, C=38 um
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Figure 7(a). Flow rate vs. recess pressure ratio for ALH thrust bearing
(Effects of fluid inertia at film lands and recess edges)
LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=P0o=152 bar, T=45 K, C=38 um
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Figure 7(b). Flow rates through inner and outer radii vs. recess pressure ratio for ALH
thrust bearing. (Effects of fluid inertia at film lands and recess edges)
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Figure 8. Axial stiffness coefficient (Kzz) vs. recess pressure ratio for ALH thrust bearing
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Figure 9. Axial damping coefficient (Czz) vs. recess pressure ratio for ALH thrust bearing.
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Figure 10. Axial inertia coefficient (Mzz) vs. recess pressure ratio for ALH thrust bearing
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LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=P0=152 bar, T=45 K, C=38 um
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Figure 11. Drag torque vs. recess pressure ratio for ALH thrust bearing.
(Effects of fluid inertia at film lands and recess edges)
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LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=P0o=152 bar, T=45 K, C=38 um
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Figure 12. Maximum and minimum flow Reynolds numbers vs. recess pressure ratio for

ALH thrust bearing.

(Effects of fluid inertia at film lands and recess edges)
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LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=P0=152 bar, T=45 K, C=38 um
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Figure 13. Maximum fluid speed flow Reynolds numbers vs. recess pressure ratio for

ALH thrust bearing.
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Film clearance (um)

Figure 14. Film clearance (C) versus thrust load (Wz) for refrigerant thrust bearing.
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Figure 15. Recess pressure ratio versus dimensionless thrust load ( Wz) for refrigerant

thrust bearing.
(Effects of fluid inertia at film lands and recess edges)
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Figure 16(a). Dimensionless bearing mass flow rate versus thrust load ( Wz) for refrigerant
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thrust bearing.
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Figure 16(b). Mass flow rates (dim.) through inner and outer radii vs. versus thrust load
( Wz) for refrigerant thrust bearing.

41



Dimensionless stiffness coefficient, [Kzz]

Figure 17. Dimensionless axial stiffness ( Kzz) coefficient vs. versus load ( Wz) for

Dimensionless damping coefficient, [Czz]
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Figure 18. Dimensionless axial damping ( Czz) coefficient versus load ( Wz) for refrigerant

thrust bearing.
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Dual Use 6-pocket HTB for R134a compressor, Ts=38 C

0.09 4

0.08 4

0.07 4

0.06 4

0.05 4

0.04 4

0.03 4

0.02 4

Dimensionless inertia coefficient, [Mzz]

0.01 4

10 krpm, Ps=19 bar (full inertia)

= =16 krpm, Ps=24.1 bar (full inertia)

0.05

0.1

0.15 0.2

T
0.25 0.3 0.35 0.4 0.45

Dimensionless load, [Wz/(Ps-Pa)AB]

0.5

Figure 19. Dimensionless axial inertia ( Mzz) coefficient versus load ( Wz)for refrigerant
thrust bearing.
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Dual Use 6-pocket HTB for R134a compressor, Ts=38 C
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Dual Use 6-pocket HTB for R134a compressor, Ts=38 C
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6 recess R134 HTB: 16 krpm, Ps=24.1 bar, Pa=13.8 bar, Psat=9.63 bar
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APPENDIX A
FIRST-ORDER WALL SHEAR STRESS COEFFICIENTS

The perturbed wall shear stress coefficients ((“s) for the first-order equations of radial and
circumferential momentum and energy transport are given by the following expressions.

RADIAL MOMENTUM EQUATION:
1 u oK K
7rh:[luhr {Ghr —2#}
0 0
u )| _ox o u oK, K hoP
m{#j H a_r +Kr} ; m{ﬂhrj { _r_Tri| —(:—j
oL OH 0 oL0pP P, \pOr),
H - aKr . /L_lur aKr
Y :(_) {ﬂ "'K}a 7&2[ j{ }
TUh " ou, T h Jolou, |,

op ol | op ou
VP =7rp(a—§J +Vru (a—F—,j » VT :7I’p[a_-rj 7 ru (G_T_j
0 0 0 0

CIRCUMFERENTIAL MOMENTUM EQUATION:

(,ﬁ ugj 0Kk, K, 1(ﬁ A r] OKkg . Kg
Yeon= —L-2-f| = -2-%
h )l anh “h, 2L h Jlen “h

{81(9} 1 ,U/lr] [61{5}
oLOUr |, 2\ h Jyldu, |,

I oK 1fuAr oK
oo ] 2]
0 Up |, 2\ h Jol duy |,
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ENERGY TRANSPORT EQUATION
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and the following coefficients for evaluation of the Moody’s friction factors,

a, =0.001375; by, =5-10° ; ¢,, =1-10* ; e, :%
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APPENDIX B
Revised January 7, 2005

ALGEBRAIC BULK-FLOW EQUATIONS ON THE THIN FILM LANDS OF A THRUST BEARING

The flow field is represented by a series of discrete nodal bulk-flow velocities, fluid pressures and
temperatures on staggered grids (Patankar, 1980). The dimensionless zeroth- and first-order bulk

flow field variables {ur , Uy ,5,17}0’1 are represented by the discrete (algebraic) fields

{U,V,P,T}and {U,,V,,P,,T,}, respectively. Figure B.1 shows the arrangement of staggered
control-volumes for discretization of the thin film flow equations in a polar coordinate system (r,d).

The continuity equation, circumferential and radial momentum transport equations, and the energy
transport equation are integrated on the P-, U-, V-, T-control volumes depicted in Figure B.1, in
order to obtain a set of algebraic difference equations for the discrete flow variables.

ADDITIONAL NOMENCLATURE

coefficients of discrete algebraic equations

coefficients relating velocity to differences of pressure corrections
dimensionless film thickness

mass flow rates across faces of control-volumes

source terms in algebraic equations

w3 =-0>»

(r,0) radial and angular polar coordinates

{U ,V,ﬁ,T} discrete zeroth-order circumferential and radial velocities, pressure and temperature
{U, V,E,T}l discrete first-order circumferential and radial velocities, pressure and temperature
{u’ WV, ﬁ'} correction velocities and pressures

dr, ro0 sizes of control volume in radial and circumferential directions

Superscripts

refers to U-control volume (circumferential direction)

refers to V-control volume (radial direction)

refers to P-control volume (continuity and pressure correction equations)
refers to T-control volume (energy transport equation)

estimated flow variable.

correction flow variable

-+ 4U<Cc

Subscripts

p refers to nodal value of variable at center of control volume
E,W, refers to values of variables at East, West, South and North nodes relative to p-value
SN

e,w, refers to values of variables on east, west, south and north (face) sides of control volume.
s,n
1 first-order (perturbed) flow variable

Operators
|o,al|=max(0,a); (a,b) =a,by+ayh,
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P, T-control volume

U-control volume

V-control volume

U: circ. velocity
V: radial velocity
P: pressure

T: temperature

Figure B.1. Staggered control volumes for integration of bulk-flow equations
in polar coordinates (r,0)
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Continuity (mass conservation) algebraic equations:

zeroth-order equation:
mf —m? +m" —mP =0

first-order equation:

. — . \P
My, —My, +My, —my +ic(ph), 17 88 865 =0

where
m;=(phu)iary;  ml=(phv)8r):  mp=(phU) 51
m: =(p hV);redeg: my=(p hV)[r786;: mf=(p hv) r7507; m

(PhV),=prho Vo+ o hy Vo + 5o o Vi
and the following notation (phU) =5, hy Uy+ Py hy Ug+ Py ho Us;
<5h>1:51h0+50 hy

Figure B.2. P-control volume for integration of continuity equation and

pressure correction equation
Appendix B.
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Circumferential momentum transport algebraic equation:

zeroth-order equation:
ApU, =ALUg +Ay Uy, +ASUg + AUy +S3, -Sg, +hy (P, —Pg)" 8r,

first-order equation:
A;.qulp =AgU;e +AyUyy +AgUss + AUy +SZIL.JSp +h;(51p —Ppe)" Srsj

where
Ab =AL +AY +AL+AY +S]

AL =AL+AY +AS +AY +{vg +iphRe Jp 1) 81 807 +
ReP*(me _mw)u +Rep* (ﬁhV); 6[‘; 69;

with the zeroth- and first-order source terms,

north face

west face east face

Figure B.3. U-control volume for integration of circumferential bulk-flow
momentum eauation
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— u — u
HKg . HK A :
S;=( " j r, dry 86y, Sip=(—hs] {Er;}rg’éirg’éieg,

; ) (B.9)

St =Re,, (PhV); U, 51, 56} ;

~ Sty ={ron Mot Ve PL+7or Tof 1y 81y 505 + 810
vlp{yer ry 31y 80, +Rep, (ph); 59;[(un ~Uy)' i +U, Sr;;]}

and

Tor = Yop (85/55)0 T You (aﬁ/aT)o; Yot = Yop (85/65)0 *You (6H/6T)0 (8.11)

with the fluid flow advection coefficients,

A =Re, [l0-m I, m=(PRULSTS AL =Re, 04mL | my = (BRUNSE: |

AS =Re, [0+m] |l m=(5 hV)r'56,; Al =Re, [0-my |l my=(phV)r's6;;

S

where the operator || 0,a ||=max(0,a)
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Radial momentum transport algebraic equation:

zeroth-order equation:

ALV, = ALVe + AV +ALVs + ALV +Sy +hy (Ps —P,)Y 186,

first-order equation:

ApVip = AgVie + Al Viy +AgVis + A Vi +Sig, +hp (Pis =Py )" 17 867

where
Al =AL +AY A +HAL +S,

Al = AL +AY +Ag +Af +{y, +iphRe } 1) 81y 80p +Re , (m, —m,)”

with the zeroth- and first-order source terms,

north face

west face

east face

(B.13)

(B.14)

(B15)

(B.16)

Figure B.4. V-control volume for integration of radial bulk-flow momentum

equation
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— \'

[TRS _ 2V :

s;:( hrj worsey Sk =Re, (phU)) ory s6y; (B.17)
p

_S:\l/Sp ={th hi+ve PL+y,r Tl}: r;;/ Sr;;/ 69\;; +

(B.18)
ulp{yre ry 31y 86, +Re,, (ph); zsrpV[(ve -V, ) =20, 59;]}
and B B
Yip = er(aﬁlap)o +'Yru(aE/aT)0; Y1 = er(aﬁlap)o +Yru(aH/aT)0 (B.19)
with the fluid flow advection coefficients,
At =Re, [[0-m. [, m!=(phuU);sr); Ay =Re, [[0+m} || m,=(phU),5r; (.20

Al =Re, [[04+m!], m!=(phV).r/s0y; Al =Re, |0—m/ |, m; =(phV)ir/56;;

S
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Enerqgy transport algebraic equation:

zeroth-order equation:

Aﬁp =ALT: +AL Ty + AT + ATy +sg

first-order equation:

Airpflp = AfTie + AW T +AgTis + Al oy JFSlTp
where
Al =AL+A) + AL +A[ +S,+110,S, |

AL = AL +Al + AL+ AL + {1 +ipC,h (Re /E, ) ! 1y 51 50y

with the zeroth- and first-order source terms,

south face

Figure B.5. T-control volume for integration of energy transport (fluid
temperature) eauation
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—T T
Sy :%(KO[UZ +V? +%UAV}+KSAVEAV—UD r&r, 80 +

P P (B.25)

Ar D Vs, T T T .3 T\ Ts,eTsaT T 77

: —Phi (P, -P,) 81 +(Re, [E.)(HpTs +HsTg) ry 817 807 +[|0,-ST, ||T,
Sp = (Re,, /E;)(Hg +Hg), 1y 81, 36, (B.26)
ST, =B hT{UT [P, - B, ot + VI[P, =B, ] r7 507 | (B.27)

SIP :_{yTh h1+yT9 U1"_’YTr Vl (YTP —1i GBT hT)Pl } r 6[’ 86\/
T (B.28)

o BThUen L) B ) 51+ (B TV (B ) 0]
p

with the fluid flow advection coefficients,

At =C,(Re, /E)[I0-m] ||,  m] =(phU)or;

Ay =C,(Re, JE)[[0+m] ||, | m, =(phU) 5T ; ©.29)

Al =C,(Re, /E)[0+m] |, M =(p V). ri60; |

AL =C,(Re, /E)[[0-m . ml=(phV)r 50}

Pressure correction equations

Let the flow variables be given as

U=U"+u; V=V +V;P=P +p’; (B.30)

U,=U;+ui; Vi=V, +V}; P.=P +7}

where the (*) fields are assumed to satisfy the momentum equations but not the continuity equation.
The (*) fields are corrections to be determined from satisfaction of the mass flow continuity
equation(s), zeroth and first-order. The fields above are substituted into the momentum transport
equations, and implementing the SIMPLEC method (Van Doormal and Raithby, 1984), the following
relationships between the correction velocities and pressure are obtained:

=05 (py ~P: s v =Dy (ps - )
(B.31)
Uty =D (Pl ~Pie '+ Vi =Dy (Pis Py )
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where

ht &r) hory 80,
D;:M; Dgzw;with nzbjAnb:AE+AW+AN+AS (B.32)

u u \ \'

AT AL A =T A

Substitution of the assumed flow fields into the continuity equation leads to the following pressure
correction equations:

zeroth-order equation:

AgPp = AEPE + AWy +AsPs + APy +S; (B.33)

first-order equation:

ApPi, = AEPie + AwPiw +AsPis + AxPiy + 51 (B.34)
where

A} =%A§b =AL + AL + AL + AL

AZ=(ph), 81’ Dy; Af=(ph), 17 36; D} (B.35)
Al =(h);,51F DYy A% =(ph); rf 5607 DY

and the mass flow source terms are:

SP =—(m; -m}, +m —m] J° (B.36)

S? =—[m3, —my, +mi —m2 )P +ic(h)’ rF ot o6 | (B.37)
are evaluated with the (*) fields.

THE NUMERICAL SOLUTION PROCEDURE

The governing difference equations on the bearing film lands are solved iteratively. The steps in the

numerical solution are summarized as follows:

a) Initial guesses for the recess pressures and the film fields for pressure (P *), velocities (U*, V*)
and temperature (T ) are calculated.

b) The coefficients for the circumferential momentum transport equation (B.5) along the first row of
U-control volumes (off the bearing recess middle plane) in the film lands between recesses are
calculated, and the transport equation is solved using the tridiagonal matrix algorithm (TDMA).
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9)

h)

)

The treatment under step b) is repeated for the radial momentum transport equation along the
second row of V-control volumes, equation (B.13). Note that the line-by-line solution procedure
sweeps in the radial direction from the recesses towards the bearing outer (and inner) planes.

The coefficients of the pressure correction equation (B.33) on the first row (coinciding with the
first U-control volume row but between the first and the second V-control volume rows) are
calculated and the pressure correction equation is solved by the TDMA procedure.

The velocities and pressures upstream and along the current row are corrected by adding the
correction fields to the estimated flow fields (U*, V*, P *).

The coefficients of the energy equation (B.21) are calculated, and the equation is solved using the
TDMA to render the temperature field in the T-control volume row. The fluid properties, functions
of the local pressure and temperature, are immediately updated at this stage.

Steps b) to f) are repeated for all subsequent rows until the bearing exit boundaries (inner and
outer) are reached. The inlet velocities at the recess boundaries and entering the film lands are
obtained by satisfying the local flow continuity constraint at the control volumes facing the recess
boundaries.

The iterative procedure above is repeated until the sum of (absolute value) residuals of mass flows
> S

domain

on the control volumes | Y SE,
domain

} is below a prescribed tolerance value, typically 0.1%

of the global mass flow rate.

Once a solution to the flow field in the film lands has been obtained, the recess temperatures are
calculated through the global energy balance equation at the bearing recesses.

The zeroth-order flow rates from recess into the film lands are evaluated and compared with the
orifice flow rates. In general, a difference exists between these two flow rates, and a Newton-
Raphson scheme is implemented to update the recess pressures and to satisfy the flow continuity
requirement at each recess. A thorough discussion on this step is given in the main text of the
report.

Steps (b) through (j) are successively repeated until the difference of the orifice inlet and exit flow
rate for each recess is below a tolerable value (about 0.6%).

The governing difference equations on the bearing film lands are solved iteratively. An approximate
solution for the flow field variables is used to initiate the calculations. The velocity components are
first calculated from the circumferential and radial momentum transport equation using an estimated
pressure field, and then a pressure correction equation based on the continuity equation provides
corrected pressure and velocity fields. Solution to the energy transport equation also renders an
estimate of the temperature field. The updated pressure and velocity fields are substituted again into
the momentum and pressure correction equations resulting in (generally) more accurate velocity and
pressure field solutions.
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